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We examine the effects of medium dependence of the two-body dynamics on 
the many-body properties of Fermion systems, with approximation ultimately 
aimed at lower densities for all temperatures. The dynamics are initially treated 
in terms of a pair-composite formulation given previously, and the underlying 
single-Fermion nature of the pair constituents allows interpretation via more 
conventional thermal many-body formalism. This permits construction of cou- 
pled equations for composite amplitudes and bound states, single-particle energy 
and momentum distributions, and macroscopic thermodynamic properties. We 
explore differences between our results and those of traditional theories which 
incorporate two-body correlations in some fashion, and we display explicitly 
how correct limiting results are recovered from our equations when the density 
and /or  coupling strength is decreased. Finally, we provide an interpretation of 
our results via a form of quasiparticle quantum cluster expansion analogous to 
the familiar particle quantum cluster expansion. 
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1. INTRODUCTION 

The many-body problem for physically interesting systems is plagued by 
difficulties, of both mathematical and conceptual nature, sufficiently pro- 
found that exact solutions can be found only in certain limits of the 
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parameters characterizing the system. (Of course, there are model problems 
which have exact solutions.) For small parameters one can usually expand 
the thermodynamic properties of the actual system about those of a simpler 
reference system. The simplest such expansion is perturbation theory, an 
expansion in the coupling constant of the two-body interaction. (~) Two 
perhaps more realistic limits for which well-known expansions exist are, 
first, that of "low" number density n and "high" temperature T and, 
second, that of "low" density and "low" temperature. Derivation of the 
expansion applicable in the latter regime, particularly at T = 0, was the 
object of numerous early applications of quantum field theoretic techniques 
to statistical physics. 3 The series applicable in the former regime is the 
familiar virial expansion. (3) In both cases the density is sufficiently low that 
ha3< 1, where a is some length characterizing the potential, and the 
reference system is the ideal gas. It is not surprising that in the two limits in 
which the problem is soluble, the condition ha3<< 1 should be met, for it 
affords an enormous simplification of the many-body theory. This simplifi- 
cation is that the dynamics of two-body interactions within the many-body 
medium can be treated as independent of that medium. The scattering and 
bound states of any two particles can be handled as if these particles were 
in vacuo. The condition n a 3 <  1 can be said to be that of medium- 
independent dynamics. The extent to which two-body scattering is affected 
by the medium and the nature of the corrections with the small na 3 

constraint then poses a subject for investigation. 
This paper has a twofold purpose. First, we examine in detail the 

effects of medium dependence on the two-body scattering. The usual 
approach to this issue, formulated in terms of thermal Green's func- 
tions, (4-6) has been via the propagation and scattering of single Fermions 
in the medium. A second approach, which is an outgrowth of a formulation 
discussed previously, treats the scattering pair of Fermions as a unit 
propagating through the medium. This composite unit is taken as the 
fundamental component of the medium, and the internal dynamics of the 
composite are manifested through nonstandard (Boson) commutation rules 
of the composite fields. It is this latter formulation which we use in this 
paper. We are then led unambiguously to a two-particle T matrix, satisfy- 
ing a Lippmann-Schwinger equation. In Section 2, we elucidate the struc- 
ture of this T matrix, and show how it gives two-body bound states and 
scattering amplitudes which include the effects of the surrounding medium. 

There is still the question as to how these microscopic two-body 
properties affect the macroscopic thermodynamic averages of the many- 
body system, and it is our second purpose to address this question~ This 
connection is nontrivial even in the limit of medium-independent scatter- 

3 For a review and references concerning the T = 0 ground state formalism, see Ref. 2. 
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ing. (See Section 4.) Consequently a second condition (in addition to na 3 
being small) has been traditionally imposed. There are two obvious choices 
for this second condition and they lead to the two different known 
expansions. 

One choice for this second condition is n~k 3 ( l, where )~ is the thermal 
wavelength (2~rh2/mkBT) 1/2. This condition, together with na3< 1, marks 
the resultant theory as a true "low-density" expansion, since n is smaller 
than either of the other naturally occurring densities a -3 or ?-3.  This 
theory is in fact the virial expansion. (3) The additional requirement that 
n~k 3 < 1 indicates that the system is nondegenerate. Consequently, Fermi or 
Bose statistics do not enter via characteristic distribution functions; only 
Boltzmann factors appear. However, statistics do enter through exchange 
effects if X/a > 1. If ~/a < 1, even exchange effects disappear and the 
virial results are completely independent of statistics. Both )t/a <> 1 are 
compatible with na 3 < 1 and nX 3 < 1, of course. 

Another choice for a second condition on the theory is X/a > 1, which 
gives what may be called a short-range interaction expansion; i.e., a is 
smaller than either of the other naturally occurring lengths X and n -  1/3. In 
such a theory exchange effects are always important. If the temperature is 
such that n~ 3 < 1, the expansion shares a region of applicability with the 
virial expansion. If, on the other hand, n)t 3 > 1, statistics enter through 
both exchange effects and degeneracy factors (i.e., characteristic Fermi or 
Bose functions). The details of this theory have been carried out only at 
absolute zero (where both X/a and n)t 3 are infinite). (8) 

The above discussion is summarized schematically in Fig. 1, where the 
region of validity in the temperature-density plane of the virial and 
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zero-temperature theories are shown. There is no overlap between these 
limiting cases, although a true medium-independent treatment (na 3 < I) 
must include both. Such a treatment has in the past not received much 
attention although the necessary theoretical framework is well known. One 
reason for this situation is that interesting systems like bul l  He 3 liquid exist 
at densities such that the na 3 < 1 criterion is simply not applicable, and 
low-temperature properties must be investigated by other methods. Thus, 
one may ask if complete treatment of the na 3 < 1 regime for all tempera- 
tures is applicable to any system or justified by any experimental situation. 
Indeed such a situation appears to occur for He 3 monolayers adsorbed on 
graphite, i.e., the monolayers apparently remain in the gaseous phase down 
to absolute zero (at sufficiently low density). That is, adsorbed He 3, unlike 
bulk He 3 or He 4, exists in a low-density phase at all temperatures. 4 A 
low-density expansion applicable to all temperatures would presumably be 
appropriate for calculating thermodynamic properties of this system. Calcu- 
lations along these lines have been performed by Vetrovac and Carneiro. ( ~ 7) 

With increasing density, a medium-independent approximation is 
clearly inadequate. In Section 3 we give a prescription for calculating 
thermodynamic quantities, in particular the density as a function of temper- 
ature and chemical potential, and this in principle determines all thermody- 
namic quantities. This prescription uses the medium-dependent dynamics, 
but could be carried to the medium-independent limit. Thus the complete 
description requires the pressure 

P (  t~, T )  = ; ? o o n (  l~', T ) d ~  ' (1.1) 

the entropy density 

s( 7") =  -7~ (1.2) 

and finally the energy density 

E(/.t, T) = I ra+ T S  - P (1.3) 

In order to obtain the density n to generate the macroscopic properties, 
Eqs. (1.1)-(1.3), one may simply integrate the single-particle momentum 
distribution n(k). However, for our purposes, this requires establishing the 
connection between single-particle properties (like the momentum distribu- 
tion and single-particle energy) and the composite amplitude and bound 

4 The experimental situation is described in Ref. 9; a virial expansion analysis can be found in 
Ref. 10. 
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states. This is done in Section 3 by retreating to traditional methods to 
approximate the single-particle properties which appear (according to our 
interpretation) in the composite state equations. The approximations needed 
to generate our composite amplitudes and bound states by traditional 
formalism involves certain on-energy-shell replacements in energy denomi- 
nators at specific points in the calculation. The same prescription then 
permits approximate determination of the single-particle properties n(k) 
and e(k) in a manner consistent with the original pair-composite results. In 
the language of the single-particle formalism, such an approximation repre- 
sents a truncation of certain diagrams. As it happens, this truncation is 
such that no single-particle lifetimes appear explicitly since only the mo- 
mentum distribution and the real part of the single-particle energy are 
parameters of the theory. Lifetime effects are clearly included, however, 
and the single-particle lifetime could be calculated by again appealing to 
the traditional formalism. The final coupled equations involve the compos- 
ite amplitudes and bound states, together with the single-particle energy 
and momentum distribution, for fixed values of the chemical potential and 
temperature. In the last analysis, once these relationships have been estab- 
lished, with feedback couplings of composite dynamics, particle dynamics, 
and thermodynamic parameters, the resulting equations are then in any 
application to be solved self-consistently. 

The analysis in Section 3 may be subjected to two distinct limiting 
cases. Full description of thermodynamic quantities have been given to 
second order in the coupling constant (perturbation theory). Furthermore, 
the well-known virial expansion gives the density to second order in the 
fugacity parameter ~ = e B~ with fl the inverse temperature and ~t the 
chemical potential. This expansion is valid in the limit of low density, 
where all dynamical quantities become medium independent. We require of 
any medium-dependent theory that it recapture both these limits. We also 
expect to recapture the density perturbation theory at zero temperature first 
obtained by Galitskii. (8~ 

We also impose on any theory the rather subjective requirement that 
the momentum distribution be interpretable in terms of single-particle 
motion through the medium plus additional terms clearly arising from 
two-body correlations. This interpretation is provided in Section 4 as a 
quasiparticle quantum cluster expansion. 

2. MEDIUM-DEPENDENT TWO-BODY DYNAMICS 

The formulation of the many-body problem in terms of composites 
leads to a hierarchy of composite Green's functions. (7) A factorization 
approximation for the two-composite propagator, analogous to the ordi- 
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nary Hartree-Fock factorization for the two-particle propagator (i.e., dy- 
namical correlations between composites are thus neglected) gives unambig- 
uously a T-matrix satisfying a Lippmann-Schwinger equation 

JU(P)  
T s (P, z) = V s + V s z - S(f~o(P) Ts (P' z) (2.1) 

where P and S are the total momentum and total spin of the composite. 
(While the two-body interaction preserves total spin, it may yet depend on 
S.) P and S are to be regarded as fixed parameters. The noninteracting 
Hamiltonian ~ 0 ( P )  and the "blocking" operator JU(P)  are diagonal in the 
plane wave representation for the internal pairs, 

and 

with 

and 

with 

(kl~Po(P)lk ')  = ~2(P, k)8(k - k') 

(kIJ/F(P)I k') = N(P,  k)d(k - k') 

f~(P,k) = c(kx) + e(k2) 

N ( P , k )  = 1 - n(kl) - n(k2) 

k 1 = �89 + k, k 2 = �89 - k 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The matrix element (k I Vslk') in this representation is the ordinary Fourier 
transform of the two-body potential 

V s (k - k') = f d 3 r  e - i ( k - k ' ) ' r v  S (r) 

in spin state S. 
These composites embody hidden additional symmetries (i.e., they are 

in fact formed from Fermion pairs). These symmetries manifest themselves 
through nonstandard commutation relations for the composite field opera- 
tors. The nonstandard rules in fact are responsible for the "blocking" 
operator N(P, k). If the total number of composites is N / 2 ,  n(k 0 must be 
normalized to 

N = 2 ~  n ( k l )  (2 .6)  
kl 
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We therefore interpret n(kl) as a single constituent momentum distribution. 
Similarly, E(kl) is interpreted as the real part of the energy of a single 
constituent with momentum k I in the medium. 

Although Eq. (2.1) emerges from the consideration of a many- 
composite system, we need not adhere to that view here, but rather simply 
regard Eq. (2.1) as the basic defining equation for the T-matrix operator. 
This definition, together with the interpretations of ~ 0 ( P )  and JU(P) ,  
appears quite reasonable, and it should be emphasized that in fact Eqs. 
(2.1)-(2.5) emerge naturally from the composite formulation. 

The traditional approach, given through the two-particle propagator 
for the Fermion constituents, also leads to various T-matrix theories which 
can be interpreted in a composite picture. O2) The simplest of these employ 
single-particle propagators in intermediate states which are either com- 
pletely free, have the free particle form with correct chemical potential, ~13) 
or have the (infinite lifetime) Har t ree-Fock structure. Such an approach 
leads to a T-matrix equation similar to Eq. (2.1), but with the "blocking" 
operator replaced by I - fF(C(kl))  --fF(c(k2)). To lowest order ~(kl) is the 
Har t ree-Fock  single-particle energy, although higher-order self-energy 
terms are frequently included, fF(c(kl)) is replaced at zero temperature by 
the step function with a proper cutoff at the correct Fermi momentum. This 
scheme is the finite-temperature version of the Galitskii integral equa- 
tions ~8~ (see Section 3). 

Further extensions of T-matrix methods, which attempt to include 
off-energy-shell effects in intermediate states, ~14) present the difficulty that 
no simple analysis via medium-dependent pair wave functions is possible. 
In our case, such an analysis is indeed quite simple, because our composite 
theory leads us to begin with Eq. (2.1) as the correct structure rather than 
one of the various possibilities emerging from the Fermion constituent 
treatments. 

Since f~(P, k) is real, Ts(P,z ) is analytic for all finite z off the real axis. 
For a given total momentum P, f~(P, k) has a minimum value f~0 = f~(P, 0), 
and Ts(P,z ) has a branch cut for z real, z > f~o, corresponding to the 
constituents scattering in the medium. In addition, the two constituents 
may possess bound states at energies E,(P, S)  < ~2 0, giving Ts(P,z ) simple 
poles at z = E~(P, S). We then have 

(kl F~ (P, S )ik') (2.7) 
(klTs(P'z)lk') = (k[Ts(a 'z ) lk ' )  + ~ z - Ep(P ,S)  

with Ts(P, z) analytic but for the branch cut. (k[F,(P, S)lk'), the residue at 
the vth pole, is related to the bound state wave function. 
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A dispersion relation for Ts(P, z) follows from these analytic properties 

(k]T s (P, z)lk') = (kl Zs (P, z')lk') 

F >( - ) 
+ a,~ (klFs(P,  00]k' 1 1 (2.8) 

oo Z ' - - O )  Z ~ O0 

with the real, positive definite spectral function Fs(P, ~0) given by 

(klI's(P, o01k') 

i - 2-qr ((klTs(P'~ + in)lk') - (klZs(P'~ - in)lk'~) 

= ~ (klF~(e, S )lk')8 (o~ - E~(P, S )) 
p 

+ ~ i  0(~o - f~o) limn_~o -((kl 7~s(e'~~ +/n)lk')  - (kl 7~s(e, ~o - in)[k'[ } 

(2.9) 

Finally, since ~o(P)  and JU(P) commute with each other, standard 
manipulation of Eq. (2.1) (see Appendix A) yields 

(k]Ts(P,o~ + in)lk') - (klTs(P,~o - in)lk') 

= f ~d3q (klTs(e,~---in)]q)N(e,q) 

•  1 _ 
~o + in - a ( P ,  q) 

1 t(q[Ts(P,~ u in)lk, ) ~o- in  f~(P, q) 

(2.10) 
so that Eq. (2.9) becomes 

(klFs(P, r ) = ~ (kIF~(P, S)lk')8[r - E,(P, S)]  
IP 

+ f d3q (klTs(P'~ +_ in)tq)N(P,q) 

X 8[oJ - f~(P,q)](qlZs(P,o~ -7- in)lk') (2.11) 

[In Eqs. (2.10) and (2.11) either the upper or lower choice of sign of in is 
implied.] 

Equation (2.11) relates Fs(P, ~0), and with an appropriate choice of z', 
Ts(P, z) through Eq. (2.8), entirely to on-energy-shell quantities. For subse- 
quent analysis it is often necessary to perform discretized Fourier sums over 
the variable z. (6) The spectral representation of Ts(P,z), Eq, (2.8), facili- 
tates these operations and puts the physical information into the spectral 
function Fs(P, ~). 
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The on-shell matrix elements of T s define internal composite wave 
functions in the medium. In analogy with standard definitions for the 
medium independent case, a scattering amplitude fps(k, k') can be defined 
by 

fps(k,k') = (klTs(P,~(P,k ')  + i~)lk' ~ (2.12) 

This amplitude fPs satisfies several relations familiar from standard 
medium-independent scattering theory. These relations follow from the 
general properties of T (see Appendix A). The corresponding wave function 

N(P,k) 
r ) --=(2~r)38(k - k') + [2(P,k') - ~2(V,k) + iT 1 fvs(k'k') (2.13) 

then satisfies the Schrrdinger equation 

~PPSk,(k) ---- (2~r)36(k - k') 

N(P,k) 
+ ~(V,k') ~(P,k) + i7 I / d3q (2.14) - ~ (klVsl@q)PSk'(q) 

Turning to the bound state wave functions, we first note that Eqs. (2.1) 
and (2.7) require the pole contributions to the T matrix to satisfy the 
homogeneous equation 

f , d 3 q  3 N(P,q) (klF~(e'S)lk')  -- (klVsl@ E~-- ~---~,q) (qlF~(e'S)lk') (2.15) 

with the normalization condition 

(k[F~(P'S)Ik')=/ ~d3q (klf~(e,S)l@ 
N(P, q) 

[E~ - ~(p,q)]2 (qIF~(P'S)I k') 

(2.18) 

Furthermore, the matrix elements of F, have the same symmetry as those of 
T s, i.e., (klF,(P, S)lk' ) = (kqF~(P, S)lk ). We then define bound state wave 
functions q~ps~(k) by 

E~ - ~(P, k) ~ps~(k)~s~(k') E~ - f~(P, k') 
(kl F~ (P, S)tk') - N(P, k) ~/~ N(P, k') (2.17) 

and the bound state Schr6dinger equation is 

N(V,k) 
~Psp(k)  = E~(P,S) f~(P,k) / d3q _ ~ <k I Vs[q)Cbps~(q) (2.18) 
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These medium-inclusive wave functions satisfy modified orthonormal- 
ity and completeness conditions, to wit 

and 

f d3k 1 ~bps~,(k ) = ~/~,  
dP~s~(k) N(P, k) 

f d3k 1 ~Psq(k) = 0 ~s~(k) N(P, k) 

f d3k 1 ~PSq'(k) = (2~) 3 8 ( q -  q') 
~sq(k) N(P, k) N ( P , ~  

(2.19) 

,~ 1 ~ps~(k)~s~(k, ) + ~esq(k)N(P,q)~sq(k, ) 

= (2~r)3N(e, k )8 (k -  k') (2.20) 

The normalization constant ~,, which appears explicitly in (2.17) and 
(2.20), is defined by Eq. (2.19) (p = p'). The internal composite states in the 
medium are then completely specified aside from this bound state normal- 
ization constant. We may then turn to the question of their relationship to 
the medium single-particle properties n(kl) and e(kl). It will prove useful, 
however, to have the T-matrix spectral function F(~0) given explicitly in 
terms of the bound state wave functions and the scattering amplitudes. 
Equation (2.11) can be rewritten, using Eqs. (2.12) and (2.17), as 

E~(P, S)  - ~(P,k) 
(klFs(V,w)[k') = ~ [ w -  E~(P,S)] -N(-(P~-k-)) 

E~(P, S) - ~2(P, k') ~Pps~(k)dP~s~(k') 
X 

N(P, k') r/~ 

+ ( ,d~3q3 8[w - ~(P,q)]N(P,q)  
J 

k /  • 1 (fvs(k,q)ffps ( ,q)  +ffps(k,q)fes(k,,q)) 

If, in Eq. (2.8), we set z' = f~(k') + iT, we have 

1 [fvs(k,k, ) +ffps(k,k,)] (klTs(V,z)[k') = 

;~ + d~ (klFs(e ,  w)lk' 1 P.V. 
Z - -  r 

(2.21) 

1 j 
f~(P, k') - w 

(2.22) 
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where P.V. denotes the principal value. Thus, the medium-dependent T 
matrix itself is given explicitly in terms of the bound state wave functions 
and scattering amplitude, in precise analogy with traditional medium- 
independent scattering theory. 

Equations (2.1) and (2.12) give an equation [analogous to Eq. (2.14)] 
for the amplitude f p s ( k , k ' ) .  A similar equation can be written for the 
medium-independent amplitude f~~ (note that this is independent of 
P) by taking N ( P , k ) ~  1 and f ~ ( P , k ) ~ k 2 / m .  These two equations may 
then be combined in the result 

d3q o k fps(k,k') = f ~ ( , k ' )  + f  (-~)3 fs~ ( k'q ) 

[ N(P, q) 1 ] 
• ~ (P ,k ' )Z  ~----~,q) + i6 - k , 2 / m  - q 2 / m  + i6 

• s (q, k ) 

(2.33) 

The finite-temperature version of the familiar Galitskii equation ~8) is ob- 
tained with the replacement of f~(P, k) by its free particle value. Similarly 
N(P,k) is also replaced by its free particle value, i.e., in terms of free 
particle Fermi distributions (or the theta function at zero temperature). It is 
to be anticipated that in further development of the medium-dependent 
theory, familiar results will be obtained by these replacements. 

3. SINGLE-PARTICLE PROPERTIES AND COUPLED EQUATIONS 

In relating the single-particle properties to the T matrix discussed in 
Section 2, we shall be guided by the traditional theory of finite-temperature 
many-body systems. Such a theory determines the single-particle momen- 
tum distribution n(k 0 and the single-particle energy c(kl) to be 

n(ki) = - i G l ( k  I , t - t + ) (3.1) 

and 

r = 2m + ReZ(kl ,E(k,) • i8) (3.2) 

G~ is the single-particle propagator (in the time domain with thermal 
boundary conditions). Y~ is the single-particle self-energy, given by the 
Dyson equation 

= Gl ~ l _ G1-1 (3.3) 
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with Gl0 the free single-particle propagator (Glo and G 1 here in the energy 
domain). Z and G 1 are further related in a T-matrix theory by 

E = TG 1 (3.4) 

where T represents a T matrix, generally of the form 

T= V+ VAT (3.5) 

Here, the choice of A, the pair propagation for intermediate states, has 
various possibilities. The choice A = G l G 1 , with fully dressed single-particle 
propagators G 1, leads to a formally conserving approximation in the sense 
discussed by Baym and Kadanoff, (Is) although different choices have been 
employed. (16) Each of these choices generally results in off-energy-shell 
denominators and therefore a structure more complicated than Eq. (2.1). 
We wish to retain Eq. (2.1), however, since it emerges most naturally from 
the composite formulation. Consequently, we ask for the sequence of 
approximations which produces Eq. (2.1) from Eq. (3.5). Taking A = G 1G 1 
and using zeroth-order perturbation theory, one obtains a structure like Eq. 
(2.1) except that ~ 0  becomes an entirely free pair Hamiltonian, while J /  
becomes the blocking factor appropriate to free Fermions. Alternatively, 
replacement of off-energy-shell denominators by their on-shell values [Eq. 
(3.2)] gives the correct energy denominator in Eq. (2.1) if we assume the 
energies in Eq. (2.4) to be identified with the sum of single-particle energies, 
Eq. (3.2). This same replacement gives the correct N(P)  factor, Eq. (2.5), in 
the numerator if we use the equivalent of Eq. (3.1) in the energy domain, 
along with the normalization requirement Gl(k, 0 + ) - Gl(k, 0 - ) = - i, 
which results from the commutation relations. The key is that at some point 
in the traditional analysis, one must replace off-shell by on-shell energy 
denominators. 

In Eq. (3.4) we now identify T with the composite form, Eq. (2.1), 
using the structure exhibited in Eq. (2.8). Equations (3.4), (3.1), and (3.2) 
together then give the single-particle energy if we are guided in making 
further on-shell replacement by the notion that our result should relate e(k) 
directly to the physical n(k) and the pair amplitudes and bound states. The 
result is 

k~ + (  d3k2 
e(k0 = ~m J ~ ES D s 

• { n(k2)Re[ fPs(k'k) + ( -  1)sfr, s ( -k ,k)]  

f 1 + P.V.jdo~ fs (o~) 12(P, k) - ,~ 

+ [<klrs(P,, )lk} + ( -  1)s< - kits(P, o )lk}] / (3.6) 
1 
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where f s  (~0) is the Bose function 

fB (~o) = [ e ~(~ 2u) _ 1 ] -] 

and/z is the chemical potential. The spin factor D s is 

Ds = 16s,o + 3 8 S,I 

Equations (3.1) and (3.3) together then give, in a similar manner, the 
single-particle momentum distribution, 

d3k2 
n(kl) = fF(e(k,)) + f  

• P.V.fd~o [ f , ( ,~ )  - f , ( a ( P , k ) ) ]  

• [(klI's(P,~o)lk) + ( - 1 ) s (  - k [ I ' s ( P , ~ o ) [ k ) ] N ( P , k  ) (3.7) 

with fF(e) the Fermi function 

f ~ ( , )  = [eB<'-"~ + 1] -1 

Equations (3.6) and (3.7) form the fundamental connection between 
the wave functions (both bound and scattering states) in the medium and 
the single-particle properties. These wave functions indeed arose from 
consideration of the medium as a system of composites. The effective 
two-body Schr6dinger equation in the medium followed from the T matrix 
(not the reverse) and the T matrix itself followed from a Hartree-Fock-like 
approximation on a higher-order composite propagator. The composite 
formulation in itself, however, proved unable to give the single-particle 
properties, since the true single-particle nature of the medium had been 
suppressed. 

In accord with the program proposed in Section 1, we must then verify 
that Eqs. (3.6) and (3.7) do in fact recover the usual perturbation expansion 
to second order in the potential for all densities and the fugacity expan- 
sion to second order in the density for all potential strengths. Finally, the 
results should afford some meaningful physical interpretation. We examine 
first the perturbation expansion. 

In the perturbation expansion there is no bound state contribution. 
Furthermore, the scattering amplitude leading term is first order in the 
potential, while the leading term in the spectral function F s is second order. 
Hence, in Eqs. (3.6) and (3.7), in all terms containing F s the energy 
denominators may be replaced by their noninteracting values, i.e., 

p2  k 2 
•(P, k) ~ ~ + --m 
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Furthermore, Eq. (3.7) shows that n ( k i ) = f F ( c 0  to first order in the 
coupling constant, so that in all terms we may use the replacement 

;l U(e,k) l-f  P+k - e-k 

These replacements are also used in the spectral function, Eq. (2.21), where 
the scattering amplitude is simply replaced by the potential. With these 
substitutions, Eqs. (3.6) and (3.7), when expanded to second order, give 
correctly the perturbative expressions O7) for e(kl) and n(kl) (see Appen- 
dix B). 

Before consideration of the fugacity expansion, we first rewrite Eq. 
(3.7). Note that the "noninteracting" state ]k) is understood to be charac- 
terized by an internal momentum k as well as total momentum P and total 
spin S, and in fact is a plane wave eigenstate of the Hamiltonian ~'P0(P) in 
Eq. (2.2) with eigenvalue f~(P, k), 

~ o ( P ) l k  > -- ~(P, k)lk > (3.8) 

The full Hamiltonian ~ is that for which the states ]v) and ]q) are 
eigenstates with energies E.(P, S) and f~(P, q), respectively, 

~ l v )  = E~(P,S)]v), ~ l q )  = ~(P,q)[q) (3.9) 

The wave functions +psi(k) and r discussed in Section 2 are 

(k I v) = ,ps .  (k), (k [q )  = d?Psq(k ) (3.10) 

With the aid of Eqs. (2.13), (2.20), (2.21), (3.8), (3.9), and (3.10), it is 
possible to show that [again fB(E ) is the Bose function] 

(klf8 (~Yf) - f~ (~0 ) [k ' )  

_ 1  - -~ IN(P,k')fps(k,k') + N(P,k)f~vs(k',k)] 

fB[~(V'k ')]  - - fB[~(P 'k ) l  + 1 f&o(klFs(P, co)lk, ) • 
~ ( P ,  k') - ~ ( P ,  k) 

• ( fB(C~ 
o~ f~(P, k) ~o - ~2(P, k) - i8 

f a ( w ) - / B [ ~ ( P , k ' )  ] 1 + (3.1.1) 
co -- f~(P, k') w - f~(P, k') + i8 J f 

From the diagonal matrix element of Eq. (3.11), we recognize that Eq. (3.7) 
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can be written in the form 

d3k2 
n(kl) = fF(r ) + ; 

• {-  I I.(k, k)* l 

+ (k + ( -  1)S(-k) l fB(~)  - fB(~0)lk)} (3.12) 

The fugacity expansion parameter is ~" = e B", with small ~" associated 
with low density and/or  high temperature. In expanding Eq. (3.12) to 
second order in ~, it must be noted that the Fermi function fF(E(kl)) 
requires also that e(kl) be expanded in ~" as well through Eq. (3.6). The end 
result then gives the fugacity expansion for n(k~), 
n(k]) = ~e -flk21/2m 

+ ~2 t-  e-Bk2'/m 
l 

+f (-~)3 sd3k2 ~ D s ( k +  ( - 1 ) S ( - k ) l e  -t~e~- e-B~'%lk)) (3.13) 

In the second term, ~ and ~Vf 0 are taken at the ~ = 0 medium-inde- 
pendent limit. The usual fugacity expansion gives the total density as a 
series in ~'. Integration of Eq. (3.13) [see Eq. (2.6)] then gives the usual 
result. (3) 

Knowing that Eqs. (3.6) and (3.7) do indeed recover the required 
limiting cases, we then rewrite the density and energy as 

d3k2 ~D s 
n(k,) = fFl,(kl)l + f 

If  d3q N(P' q)[ {/"s (k' q)12 + • ( -1 )SRe  fr, s(-k,q)f~ps(k,q) ] 
l -  

f~[~(P' q) l - fB[~(P, k) ] 
• N(P, k) 

[ ~(P, q) - ~(P, k) ]2 

+ ~ [OPs~(k)[2 + ( -  1)SReO~,s~(-k)Oi, s~(k) 
N(P, k)~/~ 

x E f.[ E~(P, s )  ] - y,[ a(P, k) l l [  
J 

(3.14) 
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and 

k~ + f d3k2 

• tn(kz)Re[ fPS (k, k) + ( -  1)Sfps(-k,k)] 

+ P.v.f d3q I Ifps(k' q)l= + (-1)SRe fps(-k,q)~es(k,q)] 

• N(P,q) fa[~(P' q) ] + E  e(P,k) - E~(P, S) 
~2(P, k) - f~(P, q) ~ N(P, k)T/~ 

• [l~,es~(k)l 2 + (-1)SRed~s~(--k)~ps~(k)lfnIE~(P,S)]t  
J 

(3.15) 
The four coupled equations (2.18), (2.23), (3.14), and (3.15), together with 
the density n (fl,/~) given by 

d3kl 
n( fl, IQ = 2 f g l  

form a complete description of the medium-dependent dynamics and the 
many-body thermodynamics, deduced from the view of the many-Fermion 
medium as a set of pair-composites. 

We may apply this theory to the special case of a repulsive Fermi gas, 
studied previously by Galitskii for zero temperature. ~8) In this case there 
are no bound states. Galitskii's result gives the chemical potential in terms 
of the density n, n = k~/3~r 2, through the expression /~ = c(kf). We may 
recapture this result from our formulation through the following steps in 
Eq. (3.25). (1) Replace the scattering amplitude fps(k,q) by the medium- 
independent amplitude throughout. (2) Replace the energy denominator by 
its free value, i.e., ~2(P, k) - ~(P, q)--> kE/m - q2/m. (3) Replace 

and 

n(k2) -->fF[ c(k2) ] ---> O(kf - k2) 

N(P, q)fn[ f~(P, q) l -->fF (c( P /2  + q))fF(~( P/2 -- q)) 

-->19[ k f - [P /2  + ql ]| k f - I P / 2  - q[l 

(see Appendix B). (4) In this low-density limit only the zero-energy singlet 



Medium-Dependent Dynamics In Fermi Systems 587 

scattering amplitude enters, and this is simply the scattering length a, 
m �9 (o) , a -  

4~rh2 iklimo f~=0( k,k )]tk'l=lkl 

Note that in this formulation the medium dependence of the two-body 
dynamics is not at all required to recover the Galitskii result. 

4. CONCLUSIONS AND INTERPRETATIONS 

Equations (2.18), (2.23), (3.14), and (3.15) represent a mixed descrip- 
tion of the many-body dynamics and its attendant thermodynamic proper- 
ties. This description uses both the single-particle properties of the medium, 
and its composite nature as well. The quantities n(kl) and c(kl), as they 
emerge from the composite formulation, required interpretation beyond the 
composite description. This interpretation was provided from the more 
traditional many-body theory, in terms of single-particle propagation. 
Clearly for an understanding of the two-body dynamics in the medium one 
must also understand the single-particle properties, in particular the mo- 
mentum distribution n(kl) and the energy ~(k 0. These quantities enter 
through the blocking operator JU and the "noninteracting" Hamiltonian 
H 0  in Section 2, and their appearance in the dynamical equations accords 
with one's physical intuition. But the converse is also true. An understand- 
ing of the single-particle properties requires an understanding of the com- 
posite dynamics, and this is seen in Section 3. In this case, however, the 
structure of Eqs. (3.14) and (3.15) are not such as to provide a simple 
physical picture of their dynamical effect. In fact, we do not need the 
details of the single-particle motion to obtain thermodynamic quantities, 
since the full particle density n(fl, i~) is given entirely in terms of the 
blocking operator, 

n(fl, ~)= f ~ d3k ( 1 - N ( a , k ) )  

for all P. That is, to obtain n(fl,/~), one need only consider composites at 
rest, and sum over their internal momenta. 

Nonetheless, if we consider Eq. (3.12) it is possible to picture correc- 
tions to free quasiparticle behavior due to composite formation. Equation 
(3.12) contains, in addition to the Fermi function for the free quasiparticles, 
two additional terms. The second of these exhibits the difference of the 
Bose function for the interacting and free but fully dressed quasiparticles, 
fB(Jg ~) - f a ( ~ 0 ) .  This corresponds to the two-particle density matrix 
corrections to the familiar quantum cluster expansion (a) with, however, the 
following differences. In the usual cluster expansion, the Bose functions are 
replaced by Boltzmann factors, and medium dependence of ~ and ~ 0  
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does not appear. The fact that Bose functions appear here reflects the fact 
that the composites are Bosons (not elementary Bosons, since there are 
additional symmetries). In fact, the cluster expansion never introduces the 
concept of the single quasiparticle. Consequently, the only remaining term 
in the fugacity expansion consists of the second-order terms from the free 
particle Fermi function. 

The last term of Eq. (3.12) is in fact the two-quasiparticle density 
matrix for a quantum quasiparticle cluster expansion. The zeroth term 
f(e(k0) here represents the free quasiparticle motion, with an energy which 
already includes to some extent the interactions. Since the last term 
explicitly gives the two-quasiparticle cluster correction, this interaction has 
been overcounted, and the second term of Eq. (3.12) then corrects this 
overcounting. In fact, in the fugacity expansion, the first two terms of Eq. 
(3.12) simply replace the quasiparticles by undressed (free) particles, inde- 
pendent of the interaction strength. A procedure similar to that giving n(k 0 
in Eq. (3.12) leads to an expression for E(kl) alternative to Eq. (3.6), 
namely, 

k2 + f d3k2 

• {[ n(k2)+ fB[ a (P ,k) ] ]Re[  fps(k, k) + (-1)Sfps ( - k ,  k)] 

1 1 (k + ( -  1)S(-k)lfz(~)(Sef - ~'%) j / ( e )  
2 

+ ~ ( p )  ( ~  - ~r (~,P) Ik> } (4.1) 

JU(P) is the blocking operator defined in Section 2. Note that ~ - ~U0 
= JU V, and the last term gives the two-quasiparticle cluster expansion for 
the quasiparticle energy. The first correction, involving n(k2), is recognized 
as the usual Hartree-Fock-like self-energy. Here again the medium depen- 
dence has been overcounted in constructing the cluster terms, and the term 
involving fn[~2(P, k)] corrects for this overcounting. 

The cluster terms in Eqs. (3.12) and (4.1) have a clear physical 
interpretation, while those terms reflecting the overcounting are not at all 
transparent. In fact, from a practical point of view, the set of coupled 
equations (2.18), (2.23), (3.14), and (3.15) [together with (2.4) and (2.5)] are 
more useful, while Eqs. (3.12) and (4.1) do afford a physical interpretation. 

As was mentioned, a possible application for this theoretical treatment 
lies in the two-dimensional He 3 gas problem. If one takes the density to be 
sufficiently low that the blocking factors N(P, k) are taken as unity, the 
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theory simplifies greatly. In particular, one can show that all quantities can 
be expressed in terms of the forward medium-independent scattering ampli- 
tudes f(0)(+ k, k), and hence in terms of the phase shifts of the two-body 
potential and the bound state energies. In this respect the theory is as 
simple as the fugacity expansion. However, a detailed investigation of the 
He 3 two-dimensional system with these simplifications reveals thermody- 
namic inconsistencies at low temperature. (]8~ The difficulties can be traced 
to a Bose-like condensation which in fact results from the blocking factors 
being replaced by 1. That is, medium dependence plays an essential role 
over at least some region in the temperature-density plane. The full 
medium-dependent theory has not yet been analyzed for this system, 
although it appears that such analysis is necessary for complete consistency 
in the two-dimensional problem. It would appear that if one considers the 
entire range of temperatures, for any interesting physical system strictly 
medium-independent dynamics never suffice. 

Application of the theory to helium monolayer systems seems feasible, 
and because of the experimental accessibility of a relatively "low-density" 
gaseous phase for selected temperatures, we might expect the theory to 
have a wider range of applicability here than in the bulk case. Nevertheless, 
a second application, which will constitute a parallel effort, concerns bulk 
He 3 properties near the gas-liquid transition temperature. We wish to 
explore this for two reasons. First is the availability of considerable experi- 
mental data, and second is the fact that the direct calculation of properties 
like the gas-liquid transition temperature will severely test the theory in a 
case of practical interest. 

Before attempting these calculations, however, it would appear to be 
useful to consider the simpler if somewhat artificial system of the hard 
sphere Fermi gas. In the near future, quantum mechanical molecular 
dynamics simulations of this system at finite temperature should provide an 
"exact" equation of state (19) for comparison with our analysis. Such a 
calculation for the hard sphere system, involving the self-consistent solution 
of the coupled equations (2.23), (3.6), and (3.7), is now in progress. It 
should be noted that this calculation itself provides a significant improve- 
ment over those in which the medium-dependent amplitudes involve either 
free particle energies or simple Fermi distributions (see Section 2). Further- 
more, it will be interesting to compare higher-density corrections from the 
correlations included in our theory with those known corrections due to 
three-particle correlations. 

This paper represents in a sense the completion of the conceptual 
framework begun in Ref. 7, where the self-consistent composite (Fermion 
pair) wave functions in the medium are constructed. This composite wave 
function [see Eqs. (2.13) and (2.18)] is analogous to the self-consistent 
constituent wave function of elementary Hartree-Fock theory. For exam- 
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ple, there are no finite lifetime effects for the pair in our formulation, just as 
Hartree-Fock theory exhibits no lifetime effects for the single particle. 
Ordinary Hartree-Fock theory (in a translationally invariant system) re- 
quires the calculation of two basic quantities; one is the self-consistent 
single-particle energy and the other is the single-particle momentum distri- 
bution. Since the latter is trivial in this case, only one self-consistent 
equation need be solved. The full thermodynamic description is then 
provided by the momentum distribution. In the theory presented here, there 
are also two self-consistently determined quantities (neglecting the compli- 
cation of bound states for purposes of this discussion). These are ~(P, k) 
and N(P,k), which are interpreted (section 3) via the single constituent 
energies and momentum distribution. This interpretation allows us to 
overcome a major stumbling block to a practical solution in Ref. 7. It is 
shown in Ref. 7 how the medium-dependent pair states depend on fl and 
N. However, the specific dependence of 9 and N on these same pair states 
is not made explicit. In this paper, we have obtained coupled equations for 
~2 and N in terms of the amplitude re(k, k'), and the self-consistent circle is 
made complete. Again, the full thermodynamic description is completed by 
utilizing the interpretation of N. 

We would like to interpret this theory, therefore, as the complete 
equivalent, for Fermion pairs, of Hartree-Fock theory for single Fermions. 
Such a theory should be consistent with all exact limiting cases in which 
only pair correlations must be included, and we have seen that this is the 
case for three such limits; i.e., the low-density expansion at T = 0, the 
coupling constant expansion for all T, and the small-fugacity (virial) 
expansion. The fact that we recover familiar results in certain limiting cases 
is not a major point. However, it lends a measure of confidence in solutions 
outside these known limits. Such solutions, particularly for the test case of 
the hard core gas, as discussed above, are in progress. 

APPENDIX A 

We show here some of the properties of the T matrix defined by Eq. 
(2.1). These properties are analogous to those of the medium-independent T 
matrix and are reproduced here to elucidate the specific medium depen- 
dence. While T depends on P and S, this dependence will be suppressed in 
the notation, P and S being taken as fixed parameters. Equation (2.1) is of 
the form 

T(z) = V+ VG(z)T(z) (A.1) 

with 

G(z) = JU(z - ~ o ) - '  (A,2) 
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JU and ~ 0  are each Hermitian and commute with each other so that 

G + (z)  = G(z*)  (A.3) 

Iteration of Eq. (A.1) to all orders and resummation gives an alternative 
equation for T(z): 

T(z )  = V + T ( z ) G ( z )  V (A.4) 

But Hermitian conjugation of (A.1), together with (A.3), yields (A.4) for 
T § (z*), so that 

T § (z) = r ( z * )  (A.5) 

Comparison of Eq. (A. 1) for (k I T(z)lk') and (A.4) for (k'[ T(z)lk) with the 
use of (A.5) and the symmetry of V, (k[ V[k') -- (k'l Vlk), demonstrates the 
the symmetry of T(z): 

(k[ T(z)lk') = (k'[ T(z)]k) (A.6) 

From Eq. (A.1), 

T(z) -  7"(z*)= V { C ( z ) -  ~ ( z* ) )  + VC(z*){T(~)- T(z*)) 

and 

r ( z )  - T(z*) = { 1 - VG(z*))-'V { ~(z) - G(z*)) T(z) 

Since T(z*) = { 1 - VG(z*)} - IV ,  we see that 

T(z )  - T(z*)  = T( z* ) (  G(z)  - G(z*) ) r ( z )  (A.7) 

Upon setting z = ~ • i8, Eq. (2.10) follows. 
Equations (2.15) result from the analytic form of T(z)  shown in Eq. 

(2.7), 

F~ (A.8) r ( z ) - -  T ( z )  + ~ z Z -E, 

where T(z)  is analytic in the vicinity of the poles at E~. With this 
analyticity ansatz, contour integration of (A.1) and (4) lead to 

F~ -- VG(E~)F, = F~G(E~)V (a.9) 

i.e., Eq. (2.15). The homogeneity of this equation implies that F can be 
chosen to be real. Finally, contour integration of (A.7), using this form for 
T(z), gives Eq. (2.16), 

F~ = g~ (E~ - ~ o )  2 F~ (A.10) 

The scattering amplitude [Eq. (2.12)] is 

f(k, k') = (k[ T(~2(k') + in)[k') (A. 11) 
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so that the energy corresponds to the right-hand state above the real axis 
(RA). A "left-hand above" theorem (LA) follows directly from (A.6). That 
is 

f(k', k) = <k I T(a(k) + in)lk'> (A.12) 

Note that k and k' have been reversed in the amplitude. Similarly, Eqs. 
(A.5) and (A.1 l) give a "right-hand below" theorem (RB) 

J'*(k, k') = <k] r(a(k') - i~)lk'> (A. 13) 

and finally, the "LB" theorem becomes 

f*(k', k) = <k I T(a(k) - in)[k'> (A. 14) 

APPENDIX B 

Let 
2 2 

~~ = ~ - , 3,4 = ~ ~ P - q 

Following the prescription given in Section 3, the scattering amplitude 
(forward and exchange) is given to second order by 

fp s (+k ,k )  = ( - k] Vslk> 

+ f daq < +-klVsiq>(qlVslk>[1- fr(E(3~ fe(c(4~ 
(2~r)3 c~o) + c(2o)_ c~o)_ q(o)+ i8 

(B.1) 

while the spectral function is 
3 

< __ klFs(P, ~o)lk ) -- ( ~ 8[~o - 4 0) - d4~ 1 <__ k i Vslq>(q [ Vslk > 

• [1 - fe(E~3 ~ - fF(e~40))] (B.2) 

Equations (3.7) and (B.2) together give 

n(k,) = fF(q) + P.v.f d~k~ d3q ~ D s 
s 

• [<k[ Vs[q> + ( -  1)s< - k I Vslq>]<ql Vslk > 

+ 4o)_  ,(o)_ 

)< [1 - fF(c(3 ~ --/F(E (~ ][1 - fr(C~ ~ -- fF (%(0)) ] 

•  fs (c(o> + c(o>) _ fB (~}o> + e~o)) ] (B.3) 
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With the recognition that 

fs[ r + 4o)] [ 1 _ fF(,~O)) _ fF(,(0)) ] = fF(,}O,)fF(40)) (B.4) 

SO that 

[1 - i~(4o)) - i~ (,(4o))][1 - i~ (4o,) - i~(4o)) ] 

•  fs (c]o) + q(o)) _ fB (elo) + e(o)) ] 

= f:(d3~176 - fF(e~ ~ ] [1 -- iF(40))] 
- / . ( 4  o>)/.(4o>) [ ~ - / . (~o>) ]  [ 1 - / .  (4o>) ] 

Equation (B.3) gives the correct second-order density distribution provided 
that the E(kl) appearing in the first term, fe(q), is also given correctly to 
second order. 

Equations (3.6), (B.1), and (B.2) together give 

d3k2 ~s Ds[(kl  Vslk) + ( -  1)s( - k I Vsik)]fF('2) ,(kl ) = ,}0)q_ ; 

+ p.v.f d3q [(kl Vslq) + ( -  1)s( - kl Vslq)J(ql Vslk) 
(2~)3 (,~o) + 40)_ 40)_ ,4(0)) 

X [1-- fr( 40') -- fF('4(O') ] [ f , (  d30' + d40') + fr( 40') ] (B.5) 

From Eq. (B.4) 

[1 - fr(e(3 ~ - fr(e(4 ~ ][  fB(e (~ + e(4 ~ + fF(,(~ ] 

= f r ( 4 0 ' ) [  1 -- fr(4 ~ ] [ 1  -- f F ( d 0 ' )  ] + [1  - fF(e (~ JfF(e(O))fF(e4(~ 
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